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1 Computational Electromagnetics and Numer-
ical Methods

Numerical methods exploit the blinding speed of modern digital computers to
perform calculations, and hence to solve large system of equations. These equa-
tions are partial differential equations or integral equations. When these meth-
ods are applied to solving Maxwell’s equations and related equations, the field
is known as computational electromagnetics.

Maxwell’s equations are a form of partial differential equations (PDE). Bound-
ary conditions can be stipulated for these PDE’s, and the solution can be sought
by solving a boundary value problem (BVP). In solving PDE’s the field in every
point in space is solved for.

On the other hand, the Green’s function method can be used to convert a
PDE into an integral equation (IE). Then the fields are expressed in terms of
the sources, and the sources are the unknowns to be solved. Sources in IEs are
supported by a finite part of space, whereas fields from PDEs permeate all of
space. Therefore, sources in IEs are easier to solve for compared to fields in
PDEs.

1.1 Examples of Differential Equations

An example of differential equations written in terms of sources are the scalar
wave equation:

(∇2 + k2)φ(r) = Q(r), (1.1)

An example of vector differential equation for vector electromagnetic field is

∇× µ−1 · ∇ ×E(r)− ω2ε ·E(r) = iωJ(r) (1.2)

These equations are linear equations. They have one commonality, i.e., they
can be abstractly written as

L f = g (1.3)

where L is the differential operator, and f is the unknown, and g is the driv-
ing source. Differential equations, or partial differential equations have to be
solved with boundary conditions. Otherwise, there is no unique solution to these
equations.

In the case of the scalar wave equation (1.4), L = (∇2 + k2) is a differential
operator. In the case of the electromagnetic vector wave equation (1.2), L =
(∇×µ−1 ·∇×)−ω2ε·. Furthermore, f will be φ(r) for the scalar wave equation,
while it will be E(r) in the case of vector wave equation for an electromagnetic
system. The g on the right-hand side can represent Q in (1.4) or iωJ(r) in (1.2).
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1.2 Examples of Integral Equations

This course is replete with PDE’s, but we have not come across too many in-
tegral equations. Therefore, we shall illustrate the derivation of some integral
equations. Since the acoustic wave problem is homomorphic to the electro-
magnetic wave problem, we will illustrate the derivation of integral equation of
scattering using acoustic wave equation.1

The surface integral equation method is rather popular in a number of appli-
cations, because it employs a homogeneous-medium Green’s function which is
simple in form, and the unknowns are on a surface rather than in a volume. In
this section, the surface integral equations2 for scalar and will be studied first.
Then, the volume integral equation will be discussed next.

1.2.1 Surface Integral Equations

In an integral equation, the unknown to be sought is embedded in an integral.
An integral equation can be viewed as an operator equation as well, just as
are differential equations. We shall see how such integral equations with only
surface integrals are derived, using the scalar wave equation.

Figure 1: A two-region problem can be solved with a surface integral equation.

Consider a scalar wave equation for a two-region problem as shown in Figure
1. In region 1, the governing equation for the total field is

(∇2 + k21)φ1(r) = Q(r), (1.4)

For simplicity, we will assume that the scatterer is impenetrable, meaning that
the field in region 2 is zero. Therefore, we need only define Green’s functions
for regions 1 to satisfy the following equations:

(∇2 + k21) g1(r, r′) = −δ(r− r′), (1.5)

1The cases of electromagnetic wave equations can be found in Chew, Waves and Fields in
Inhomogeneous Media.

2These are sometimes called boundary integral equations.
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The derivation here is similar to the that of Huygens’ principle. On multiplying
Equation (1.4) by g1(r, r′) and Equation (1.5) by φ1(r), subtracting the two
resultant equations, and integrating over region 1, we have, for r′ ∈ V1,

ˆ

V1

dV [g1(r, r′)∇2φ1(r)− φ1(r)∇2g1(r, r′)]

=

ˆ

V1

dV g1(r, r′)Q(r) + φ1(r′), r′ ∈ V1. (1.6)

Since ∇·(g∇φ−φ∇g) = g∇2φ−φ∇2g, by applying Gauss’ theorem, the volume
integral on the left-hand side of (1.6) becomes a surface integral over the surface
bounding V1. Consequently,3

−
ˆ

S+Sinf

dS n̂ · [g1(r, r′)∇φ1(r)− φ1(r)∇g1(r, r′)]

= −φinc(r′) + φ1(r′), r′ ∈ V1. (1.7)

In the above, we have let

φinc(r
′) = −

ˆ

V1

dV g1(r, r′)Q(r), (1.8)

since it is the incident field generated by the source Q(r).
Note that up to this point, g1(r, r′) is not explicitly specified, as long as it

is a solution of (1.5). A simple choice for g1(r, r′) that satisfies the radiation
condition is

g1(r, r′) =
eik1|r−r

′|

4π|r− r′|
, (1.9)

which is the unbounded, homogeneous medium scalar Green’s function. In this
case, φinc(r) is the incident field generated by the source Q(r) in the absence
of the scatterer. Moreover, the integral over Sinf vanishes when Sinf → ∞ by
virtue of the radiation condition. Then, after swapping r and r′, we have

φ1(r) = φinc(r)−
ˆ

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V1.

(1.10)

But if r′ /∈ V1 in (1.6), the second term, φ1(r), on the right-hand side of (1.6)
would be zero, for r′ would be in V2 where the integration is not performed.

3The equality of the volume integral on the left-hand side of (1.6) and the surface integral
on the left-hand side of (1.7) is also known as Green’s theorem.
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Therefore, we can write (1.10) as

if r ∈ V1, φ1(r)
if r ∈ V2, 0

}
= φinc(r)−

ˆ

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)].

(1.11)

The above equation is evocative of Huygens’ principle. It says that when the
observation point r is in V1, then the total field φ1(r) consists of the incident
field, φinc(r), and the contribution of field due to surface sources on S. But if
the observation point is in V2, then the surface sources on S generate a field
that exactly cancels the incident field φinc(r), making the total field in region
2 zero. This fact is the core of the extinction theorem as shown in Figure 2
(see Born and Wolf 1980).

In (1.11), n̂ · ∇φ1(r) and φ1(r) act as surface sources. Moreover, they are
impressed on S, creating a field in region 2 that cancels exactly the incident
field in region 2 (see Figure 2).

Figure 2: The illustration of the extinction theorem.

Applying the extinction theorem, integral equations can now be derived. So,
using the lower parts of Equations (1.11), we have

φinc(r) =

ˆ

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V2,

(1.12)

The integral equations above still has two independent unknowns, φ1 and n̂·∇φ1.
Next, boundary conditions can be used to eliminate one of these two unknowns.

An acoustic scatterer which is impenetrable either has a hard surface bound-
ary condition where normal velocity is zero, or it has soft surface where the pres-
sure is zero (also called a pressure release surface). Since the force or the velocity
of the particle is proportional to the ∇φ, a hard surface will have n̂ · ∇φ1 = 0,
or a homogeneous Neumann boundary condition, while a soft surface will have
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φ1 = 0, a homogeneous Dirichlet boundary condition.

φinc(r) =

ˆ

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)], r ∈ V2, soft boundary condition

(1.13)

φinc(r) = −
ˆ

S

dS′ φ1(r′)∇′g1(r, r′], r ∈ V2, hard boundary condition

(1.14)

More complicated surface integral equations (SIEs) for penetrable scatter-
ers, as well as vector surface integral equations for the electromagnetics cases
are derived in Chew, Waves and Fields in Inhomogeneous Media. Also, there
is another class of integral equations called volume integral equations (VIEs).
They are derived in WFIM.

Nevertheless, all the integral equations can be unified under one notation:

L f = g (1.15)

This is similar to the differential equation case. The difference is that the
unknown f represents the source of the problem, while g is the incident field
impinging on the scatterer or object. Furthermore, f does not need to satisfy
any boundary condition, since the field radiated via the Green’s function satisfies
the radiation condition.

2 Subspace Projection Methods

Several operator equations have been derived in the previous sections. They are
all of the form

L f = g (2.1)

2.1 Function as a Vector

In the above, f is a functional vector which is the analogy of the vector f in
matrix theory or linear algebra. In linear algebra, the vector f is of length N
in an N dimensional space. It can be indexed by a set of countable index, say
i, and we can described such a vector with N numbers such as fi, i = 1, . . . , N
explicitly. This is shown in Figure 3(a).

A function f(x), however, can be thought of as being indexed by x in the
1D case. However, the index in this case is a continuum, and countably infinite.
Hence, it corresponds to a vector of infinite dimension and it lives in an infinite
dimensional space.4

To make such functions economical in storage, for instance, we replace the
function f(x) by its sampled values at N locations, such that f(xi), i =

4When these functions are square integrable, these infinite dimensional spaces are called
Hilbert spaces.
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1, . . . , N . Then the values of the function in between the stored points f(xi) can
be obtained by interpolation. Therefore, a function vector f(x), even though it
is infinite dimensional, can be approximated by a finite length vector, f . This
concept is illustrated in Figure 3(b) and (c). This concept can be generalized
to a function of 3D space f(r). If r is sampled over a 3D volume, it can provide
an index to a vector fi = f(ri), and hence, f(r) can be thought of as a vector
as well.

Figure 3: A function can be thought of as a vector.

2.2 Operator as a Map

An operator like L above can be thought of as a map or a transformation. It
maps a function f defined in a Hilbert space V to g defined in another Hilbert
space W . Mathematically, this is written as

L : V →W (2.2)

Indicating that L is a map of vectors in the space V to the space W . Here, V
is also called the domain space (or domain) of L while W is the range space
(or range) of L .

7



ECE 604, Lecture 36 Fri, April 19, 2019

2.3 Approximating Operator Equations with Matrix Equa-
tions

One main task of numerical method is first to approximate an operator equation
L f = g by a matrix equation L · f = g. To convert the above, we first let

f ∼=
N∑
n=1

anfn = g (2.3)

In the above, fn, n, . . . , N are known functions called basis functions. Now, an’s
are the new unknowns to be sought. Also the above is an approximation, and
the accuracy of the approximation depends very much on the original function
f . A set of very popular basis functions are functions that form a piece-wise
linear interpolation of the function from its nodes. These basis functions are
shown in Figure 4.

Figure 4: Examples of basis function in (a) one dimension, (b) two dimension.
Each of these functions are define over a finite domain. Hence, they are also
called sub-domain basis functions.

Upon substituting (2.3) into (2.1), we obtain

N∑
n=1

anL fn = g (2.4)

Then, multiplying (2.4) by wm and integrate over the space that wm(r) is de-
fined, then we have

N∑
n=1

an 〈wm,L fn〉 = 〈wm, g〉 ,m = 1, . . . , N (2.5)
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In the above, the inner product is defined as

〈f1, f2〉 =

ˆ
drf1(r)f2(r) (2.6)

where the integration is over the support of the functions, or the space over
which the functions are defined. For PDEs these functions are defined over a
3D space, while in SIEs, these functions are defined over a surface. In a 1D
problems, these functions are defined over a 1D space.

The functions wm,m = 1, . . . , N is known as the weighting functions or
testing functions. The testing functions should be chosen so that they can
approximate well a function that lives in the range space W of the operator
L . Such set of testing functions lives in the dual space of the range space. For
example, if fr lives in the range space of the operator L , the set of function fd,
such that the inner product 〈fd, fr〉 exists, forms the dual space of W .

The above is a matrix equation of the form

L · a = g (2.7)

where [
L
]
mn

= 〈wm,L fn〉
[a]n = an, [g]m = 〈wm, g〉

(2.8)

What has effectively happened here is that given an operator L that maps
a function that lives in an infinite dimensional Hilbert space V , to another
function that lives in another infinite dimensional Hilbert space W , via the
operator equation L f = g, we have approximated the Hilbert spaces with
finite dimensional spaces (subspaces), and finally, obtain a finite dimensional
matrix equation that is the representation of the original infinite dimensional
operator equation.

In the above, L is the matrix representation of the operator L in the sub-
spaces, and a and g are the vector representations in their respective subspaces.

When such a method is applied to integral equations, it is usually called
the method of moments (MOM). (Surface integral equations are also called
boundary integral equations (BIEs) in other fields.) But when this method is
applied to solve PDEs, it is called the finite element method (FEM).

2.4 Mesh Generation

In order to approximate a function defined on an arbitrary shaped surface or
volume by sum of basis functions, it is best to mesh (tessellate) the surface and
volume by meshes. In 2D, all shapes can be tessellated by union of triangles,
while a 3D volume can be mesh (tessellated) by union of tetrahedrons. Such
meshes are used not only in CEM, but in other fields such as solid mechanics.
Hence, there are many commercial software available to generate sophisticated
meshes.

When a surface is curved, or of arbitrary shape, it can be meshed by union of
triangles as shown in Figure 5. When a volume is of arbitrary shape of a volume
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is around an arbitrary shape object, it can be meshed by tetrahedrons as shown
in Figure 6. Then basis functions are defined to interpolate the field between
nodal values or values defined on the edges of a triangle or a tetrahedron.

Figure 5:

Figure 6:

3 Solving Matrix Equation by Optimization

When a matrix system get exceedingly large, it is preferable that a direct inver-
sion of the matrix equation not performed. Direct inversions (e.g., using Gaus-
sian elimination or Kramer’s rule) have computational complexity5 of O(N3),
and requiring storage of O(N2). Hence, when N is large, other methods have
to be sought.

To this end, it is better to convert the solving of a matrix equation into an
optimization problem. These methods can be designed so that a much larger
system can be solved with a digital computer. Optimization problem results in
finding the stationary point of a functional.6 First, we will figure out how to

5The scaling of computer time with respect to the number of unknowns (degrees of freedom)
is known in the computer parlance as computational complexity.

6Functional is usually defined as a function of a function. Here, we include a function of a
vector to be a functional as well.
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find such a functional.
Consider a matrix equation given by

L · f = g (3.1)

For simplicity, we consider L as a symmetric matrix.7 Then one can define a
functional

I = f t · L · f − 2f t · g (3.2)

Such a functional is called a quadratic functional because it is analogous to
I = Lx2 − 2xg, which is quadratic, in its simplest 1D rendition.

Taking the first variation with respect to f , namely, we let f = f0 + δf , and
find the leading order approximation of the functional. Therefore, one gets

δI = δf t · L · f0 + f t0 · L · δf − 2δf t · g (3.3)

If L is symmetric, the first two terms are the same, and the above becomes

δI = 2δf t · L · f0 − 2δf t · g (3.4)

For f0 to be the optimal point or the stationary point, then its first variation
has to be zero, or that δI = 0. Thus we conclude that

L · f0 = g (3.5)

Hence, the optimal point to the functional I is the solution to (3.1)
Such method, when applied to an infinite dimensional Hilbert space problem,

is called variational method, but the main ideas are similar. The wonderful idea
about such a method is that instead of doing direct inversion, one can search for
the optimal point or stationary point of the quadratic functional using gradient
search methods.

3.1 Gradient of a Functional

It turns out that the gradient of a quadratic functional can be found quite
easily. To do this, it is better to write out functional using index (or indicial,
or Einstein) notation. In this notation, the functional I becomes

I =
∑
i,j

fjLjifi −
∑
j

2fjgj = fjLjifi − 2fjgj (3.6)

Also, in this notation, the summation symbol is dropped, and summation over
repeated indices is implied in the last equality. To find the gradient in a multi-
dimensional space spanned by fj , one takes the first variation of I with respect
to fj′ yielding

δI = 2δfj′Lij′fi − 2δfj′gj′ (3.7)

∂I

∂fj′
= 2Lij′fi − 2gj′ (3.8)

7Functional for the asymmetric case can be found in Chew, Waves and Fields in Inhomo-
geneous Media, Chapter 5.

11



ECE 604, Lecture 36 Fri, April 19, 2019

Notice that the remaining equation has one index j′ remaining in index notation,
meaning that it is a vector equation. We can reconstitute the above using our
more familiar matrix notation that

∇f I = 2L · f − 2g (3.9)

The left-hand side is a notation for the gradient of a functional in a multi-
dimensional space defined by f , and the right-hand side is the expression for
calculating this gradient. One need only to perform a matrix-vector product to
find this gradient. Hence, the computational complexity of finding this gradient
is O(N2) at worst, and O(N) for many sparse matrices. In a gradient search
method, such a gradient is calculated repeated until the optimal point is found.
Such methods are called iterative methods.

If the optimal point can be found in Niter iterations, then the CPU time
scales as NiterN

α where 1 < α < 2. There is a clever gradient search algorithm,
called the conjugate gradient method that can find the optimal point in Niter

in exact arithmetics. In many gradient search methods, Niter � N resulting in
great savings in computer time.

What is more important is that this method does not require the storage of
the matrix L, but a computer code that produces the vector go = L · f as an
output, with f as an input. Both f and go require only O(N) memory storage.
Such methods are called matrix-free methods. Even when L is a dense matrix,
but is the matrix representation of some Green’s function, fast methods now
exist to perform the dense matrix-vector product in O(N logN) operations.8

The value I is also called the cost function, and its minimum is sought in the
seeking of the solution by gradient search method. Figure 7 shows the contour
plot of a cost function in 2D. When the condition number of the matrix L is large
(implying that the matrix is ill-conditioned), the contour plot will resembler a
deep valley. And hence, the gradient search method will tend to zig-zag along
the way as it finds the solution.

8Chew et al, Fast and Efficient Algorithms in CEM.
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Figure 7: Courtesy of Numerical Recipe.

Figure 8 shows a cartoon picture in 2D of the histories of different search
paths from a machine-learning example where a cost functional similar to I has
to be minimized. Finding the optimal point or the minimum point of a general
functional is still a hot topic of research: it is important in artificial intelligence.

Figure 8: Courtesy of Y. Ioannou.
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